Perspectives on Green Infrastructure: Where We Have Been and Where We Are Going Thomas P. Ballestero, James Houle, Timothy A. Puls

12th Annual North Country Stormwater Trade Show and Conference

20 October 2016

Lake George, NY

Overview

- General overview of the UNHSC
- Overview of stormwater management practice performance
 - Hydraulic
 - Hydrologic
 - Water Quality
- Economics and costs of LID
- GI practice maintenance
- Subsurface gravel wetlands
- Modern trends in bioretention practices
- Performance of undersized systems

General overview of the UNHSC

BMP Performance Monitoring

Research Field Facility at UNH

 $Tc \sim 19 \text{ minutes}$

INFLUENT DISTRIBUTION CHAMBER

SUBSURFACE INFILTRATION BASIN

> **RIP RAP** SWALE

> > SURFACE SAND RETENTION FILTER

POND

SWEEPING TEST LOT

MANUFACTURED FILTRATION DEVICE

> SUBSURFACE GRAVEL WETLAND

> > HYDRO-DYNAMIC **SEPARATORS**

BIORETENTION CELL

SAMPLING GALLERY

Parallel Performance Evaluation

•Each system uniformly sized to treat 1" runoff for 1 acre of impervious area

- •WQV=3300 cf
- •Q_{wqv}=1 cfs
- •Uniform contaminant loading
- •Uniform storm event characteristics
- •Systems lined for mass balance
- •Long term record of hydrology and contaminants

Hydrodynamic Separator

Isolator Row

Subsurface Infiltration

Filter Unit

Porous Asphalt

Pervious Concrete

Retention Pond

Stone Swale

Veg Swale

Gravel Wetland

Sand Filter

Bioretention Unit

Tree Filter

TSS Removal Efficiencies

DIN Removal Efficiencies

TP Removal Efficiencies

The Role of vegetation

Comparison of Pollutant Removal Efficiency Planted vs Grassed Bioretention

Long-term Infiltration Testing

Infiltration Rates over Time

Economics and Costs

Boulder Hills, Pelham, NH

- > 2009 Installation of 900 ft of first PA private residential road in Northeast
- Site is nearly Zero discharge (HSG A soils)
- LID subdivision 55+ Active Adult Community
- > PA Cost 25% greater per ton installed than DMA

Boulder Hills Specs

- Built on 9% grade
- Avoided use of 1616 ft of curbing, 785 ft pipe, 8 catch-basins, 2 detention basins, 2 outlet control structures
- 1.3 acres less of land clearing
- Conventional SWM = \$789,500

LID SWM = \$740,300

\$49,000 savings (6.2%)

Comparison of Unit Costs

Item	Conventional	LID	Difference
SITE PREPARATION	\$23,200.00	\$18,000.00	-\$5,200.00
TEMP. EROSION CONTROL	\$5,800.00	\$3,800.00	-\$2,000.00
DRAINAGE	\$92,400.00	\$20,100.00	-\$72,300.00
ROADWAY	\$82,000.00	\$128,000.00	\$46,000.00
DRIVEWAYS	\$19,700.00	\$30,100.00	\$10,400.00
CURBING	\$6,500.00	\$0.00	-\$6,500.00
PERM. EROSION CONTROL	\$70,000.00	\$50,600.00	-\$19,400.00
ADDITIONAL ITEMS	\$489,700.00	\$489,700.00	\$0.00
BUILDINGS	\$3,600,000.00	\$3,600,000.00	\$0.00
PROJECT TOTAL	\$4,389,300.00	\$4,340,300.00	-\$49,000.00

6% savings on total cost of SW infrastructure for a ~zero discharge site

Greenland Meadows Commercial, Greenland, NH

- "Gold-Star" Commercial Development
- Cost of doing business near Impaired Waters/303D
- Brownfields site
- Proposed site >10,000 Average Daily Traffic count on >30 acres

Greenland Meadows

Comparison of Unit Costs

ltem	Conventional Option	LID Option	Cost Difference
MOBILIZATION / DEMOLITION	\$555,500	\$555,500	\$0
SITE PREPARATION	\$167,000	\$167,000	\$0
SEDIMENT / EROSION CONTROL	\$378,000	\$378,000	\$0
EARTHWORK	\$2,174,500	\$2,103,500	-\$71,000
PAVING	\$1,843,500	\$2,727,500	\$884,000
STORMWATER MANAGEMENT	\$2,751,800	\$1,008,800	-\$1,743,000
ADDITIONAL WORK-RELATED ACTIVITY (utilities, lighting, water & sanitary sewer service, fencing, landscaping, etc.)	\$2,720,000	\$2,720,000	\$0
PROJECT TOTAL	\$10,590,300	\$9,660,300	-\$930,000

LID Retrofit: UNH Parking Lot Bioretention

- Simple, used existing infrastructure and median
- \$14,000/acre retrofit for everything
- Labor and install was \$8,500/ac (2012)
- Materials and plantings \$5,500/ac

School Street School LID Retrofit

Background:

- School Street School is 0.6 acres of impervious surface with no stormwater management, and 64% IC
- No drainage structures exist resulting in sheet flow runoff from all impervious areas during storms to playground
 - Localized flooding
 - Reduced use of playground facilities
 - Damage to adjacent road and sidewalk
 - Water quality impacts to Willow Brook

Retrofit Accomplishments

- Improved drainage and usability
- Intercept runoff, divert from principle use areas (playground and parking lot)
- Store, treat, infiltrate, convey
- Increased pedestrian safety (reduced ponding, snow and ice).
- Retrofits treated % 80 of IC
- $IC_{initial} = 64\% \rightarrow EIC 13\%$

Existing Conditions

LID Installations

Pervious concrete sidewalk

Porous asphalt BB Court

Raingardens

Dry well

NYC O&M Costs CSO Control Scenarios

- Funds for labor, supplies, and equipment
- Replacing energy demands of grey infrastructure

Figure #. BMP Long Term Volume Reduction Cost vs. Storage Volume Installation Cost

GI practice maintenance

Critical components of a bestcase scenario: People who people wh

Appropriate Design
Installation

.... Then Maintenance

1,000 Pound Gorilla

Who has primary responsibility for maintenance?

- local governments or public agencies?
- States and the Federal Governments?
- Private property owners and associations?

HWG, 2011

Uncategorized Maintenance

- + Crack sealing
- + Filling pot holes
- + Resetting curbs
- + Culvert reinforcement/replacement/renewal
- + Pipe lining/repair
- + Median mulching
- + Beautification/sodding
- + Raking
- + Cleaning
- + Sweeping

Factors that impact maintenance costs

- Inspection frequency
- Required routine maintenance (frequency and complexity).
- Specialized equipment and speculative unknowns
- Non-routine and rehabilitative maintenance
- Regulatory climate
- Extreme storms

Stormwater Maintenance Tools of the trade...

Tools of the trade...

Tools of the trade...

Winter Maintenance

What is it About Winter That is Different?

- Days are shorter
- Colder
- Vegetation dead or in senescence
- Systems may be frozen
- Snow
- Ice

Wintering tree filter

Wintering infiltration system

What is Winter Maintenance for Conventional Drainage Infrastructure?

- Gutters
- Catch Basins
- Swales
- Ponds
- Storm Sewers

Conventional Systems Winter Maintenance

- Hope it will function until spring
- Hope it does not freeze up
- Clear ice/snow blockages when they happen
- De-ice as necessary
- Plow
- Snow removal

Basically the same for GI

Maintenance is in the eyes of the beholder

A tale of two raingardens

Maintenance solved?

Maintenance Costs - Assumptions

Category of Maintenance	Type of Maintenance	complexity	price (\$)
	Structural Repairs	complicated	135
Reactive maintenance	Partial Rehabilitation	complicated	135
	Rehabilitation	complicated	135
	Solids and Debris Removal	moderate	115
Periodic/Predictive	Inspection	simple	95
	Mowing	minimal	75
maintenance	Vegetation Management	minimal	75
	Pavement Vacuuming	moderate	115
Proactive maintenance	Erosion control & bank stabilization	simple	95

Economics of Installation vs Maintenance Costs, normalized by area

Parameter	Vegetated Swale	Wet Pond	Dry Pond	Sand Filter	Gravel Wetland	Bioretention	Porous Asphalt
Capital Cost (\$)	12,000	13,500	13,500	12,500	22,500	21,550	21,800
Inflated 2012 Capital Cost	14,600	16,500	16,500	15,200	27,400	25,600	26,600
Maintenance and Capital Cost Comparison	17.8	5.4	6.9	5.4	12.8	13.5	24.6
Personnel (hr/yr)	9.5	28.0	24.0	28.5	21.7	20.7	6.0
Personnel (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	380
Subcontractor Cost (\$/yr)	0	0	0	0		0	700
Total Operational Cost (\$/yr)	823	3,060	2,380	2,808	2,138	1,890	1,080
Operation/Capital Cost (%)	6%	19%	14%	18%	8%	8%	4%

Yearly BMP Maintenance (per acre treated)

Maintenance Cost/yr/acre/lb TSS

Maintenance Cost/yr/acre/lb TP

Periodic/Predictive Maintenance

- + Solids or debris removal
- + Routine inspection
- + Mowing
- + Planned vegetation removal

Proactive Maintenance

- + Street cleaning and vacuuming
- + Snow removal
- + Erosion and sediment control
- + Reseeding

Reactive Maintenance

- + Outlet repair
- + Redesign for erosive blowouts
- + Massive vegetation removal
- + Clogged outlet structures
- + Structural repairs or rehabilitation
- + Animal burrows

Bioretention/Sand Filter/Tree Filter/Subsurface gravel wetland

- Short term
 - Reseed/replant as necessary
 - Remove excess sediment build-up and trash
 - Invasives control
 - Watering
- Long term
 - Mowing slopes
 - Weeding
 - Sediment and trash removal
 - Clear inlets and outlets
 - Replanting/reseeding

Result of Maintenance

Bioretention Parking Lot Retrofit, Durham, NH

Maintenance	Minimum	Estimated Time	Number of	
Activity	Frequency	Commitment	Employees	
Inspection	2 times per year	30 minutes taking time to fill out checklist	1	
Clean Pretreatment Trash Screens and Pick Up Trash in system	1 time per month on average	30-60 minutes per visit	1	
Spring Cleaning	1 time per year	4 hours	2	
Total personnel hours per year: 16-21 hours Estimated \$1,500 – \$2,000 (30,000 sf of IC Treated)				

Pollutant (per year)	Amount	
TSS	179 lbs.	
Cigarette Butts	4,392	
Misc. Trash	752	

Some Problems are Vexing

Performance Issues Observed in Field

Subsurface Gravel Wetlands

SUBSURFACE GRAVEL WETLAND FUNCTIONALITY AND PERFORMANCE

Subsurface Gravel Wetland

UNHSC Subsurface Gravel Wetland

Design Sources:

UNHSC, Roseen, R. M., Ballestero, T. P., and Houle, J. J. (2008). "UNHSC Subsurface Gravel Wetland Design Specifications." University of New Hampshire Stormwater Center, Durham, NH.

70

Claytor, R. A., and Schueler, T. R. (1996). Design of Stormwater Filtering Systems, Center for Watershed Protection, Silver Spring, MD.

Georgia Stormwater Management Manual, Volume 2: Technical Handbook, August 2001, prepared by AMEC Earth and Environmental, Center for Watershed Protection, Debo and Associates, Jordan Jones and Goulding, Atlanta Regional Commission.

Dissolved Oxygen in Gravel Wetland Effluent

Berry Brook, Dover, NH

The Cottages, Durham, M

.

Oyster River Road

Route 1, Portsmouth, NH

Subsurface Gravel Wetland MedianRemoval Efficiencies

6 years of data with Influent EMC medians

74

TSS Removal Efficiencies

TP Removal Efficiencies

DIN Removal Efficiencies

Thermal Impacts

78

Subsurface Gravel Wetland Hydraulic Performance

Hydraulic Profile

Mass loading for DRO, Zn, NO3, TSS as a function of normalized storm volume for two storms: (a) a large 2.3 in rainfall over 1685 minutes; (b) a smaller 0.6 in storm depth over 490 minute. DRO=diesel range organics, Zn= zinc, NO3= nitrate, TSS= total suspended solids

Column Study of Nutrient Removal

Amendments for Phosphorus

- Alum sludge
- Zero valent iron
- Limestone sand
- Electric blast furnace slag
- Internal storage volume for nitrogen
- Effect of compost

Phase 1: Nitrogen						
Column #	Soil Mix and saturation zone size	Notes				
T1-N0	UNHSC BSM with no saturation zone (control)	• Drainage to filter ratio 80:1				
T1-N1	UNHSC BSM with 25% WQV	• Soil depth in columns: 24"				
T1-N2	UNHSC BSM with 50% WQV	• 12 hour drain time				
T1-N3	UNHSC BSM with 75% WQV	• Soil tested: UNHSC mix				
T1-N4	UNHSC BSM with 100% WQV					
T1-N5	UNHSC BSM with 25% WQV	• Drainage to filter ratio 80:1				
T1-N6	UNHSC BSM with 50% WQV	• Soil depth in columns: 24"				
T1-N7	UNHSC BSM with 75% WQV	• 30 hour drain time				
T1-N8	UNHSC BSM with 100% WQV	• Soil tested: UNHSC mix				

- Size ISR
- Retention Time

Nitrogen Results

Phosphorus Results

Phase 2 - Phosphorus as PO4-P

85

Bioretention Hybrid Systems

• Bioretention with Internal Storage Volume

Inspection and Maintenance

4 - yr Forebay Maintenance - June 2008

Maintenance

- The forebay to the gravel wetland, and probably all stormwater systems may become a source of contamination as the system ages—maintenance is essential
- Improved forebay designs would include a deeper pool of water in excess of one meter, or a deep sump catch basin or proprietary treatment device for removal of solids.

Maintenance

- Sediments and plant debris stored in the forebay may be resuspended and released in subsequent storms. Routine maintenance is an important component in maintaining performance—2-3 year interval.
- Nutrients that collect in plants are released when the plant dies and decomposes in the system, therefore above ground plant litter should be removed every 2-3 years or more frequently.

Infiltration and Volume Reduction

When to Design for Infiltration

- Volume reduction (hydrologic transparency)
- Load reduction (CSO)

Constraints

- Nearby infrastructure receptors
- Existing soil/groundwater contamination
- Contamination hot spots
- Vertical setbacks
 - Groundwater
 - Bedrock

Need for Underdains

- Low infiltration rate
 - < 0.25 in/hr (Philadelphia)</p>
 - < 0.5 in/hr (EPA, NJ, NY, NH, ME, VT)
 - < 0.52 in/hr (MD, Center for Watershed Protection)
 - < 0.17 in/hr (MA)

Texture Class	Effective Water Capacity (Cw) (inch per inch)	Minimum Infiltration Rate (f) (inches per hour)	Hydrologic Soil Grouping		
Sand	0.35	8.27	Α		
Loamy Sand	0.31	2.41	Α		
Sandy Loam	0.25	1.02	Α		
Loam	0.19	0.52	В		
Silt Loam	0.17	0.27	В		
Sandy Clay Loam	0.14	0.17	С		
Clay Loam	0.14	0.09	D		
Silty Clay Loam	0.11	0.06	D		
Sandy Clay	0.09	0.05	D		
Silty Clay	0.09	0.04	D		
Clay	0.08	0.02	D		
* Source: Dawls Brakensiek and Sayton 1082					

Source: Rawls, Brakensiek and Saxton, 1982

Systems Presented Today

- Tree Filter
 - Design by water quality flow
- Tree Trench
 - Water quality volume design
 - Static sizing

Tree Box Filter

Tree Box Watershed

Tree box filter design

- Manufacturer sizing: 36 gpm (1 gpm/ft²)
- NH water quality flow sizing 198 gpm
- For media IC of 100 in/hr, capacity is 36 gpm
- Media: 80% Sand : 20% UNH Compost
- Native soil infiltration capacity ~ 0.3 in/hr

Site Characteristics

System	Watershed area (acres)	System filter area (sq. feet)	Watershed area to filter area ratio
Tree box filter	0.48	36	577
Tree trench	0.58	2,550	9.9

Overall Hydraulic Performance – tree box filter monitoring

- Inflow (calibrated weir/orifice)
- Outflow (calibrated weir/orifice)
- Inflow Estimate: precipitation times watershed area times runoff coefficient
- In system well

Monitoring period – 12 Jun 2012 – 5 June 2014

Overall Hydraulic Performance – tree box filter all data

Volume Reduction - All events

Overall Hydraulic Performance – tree box all data

Overall Hydraulic Performance – tree box filter snowmelt

Overall Hydraulic Performance – tree box filter snowmelt

Philadelphia Tree Trench

Green Streets Design Manual 31

Tree Trench Design Components

- One inch water quality volume
- If design infiltration rates are found to be less than 0.25 inches per hour, or if system is not able to completely drain in 72 hours, the system should be designed for detention/slow-release.
- Detention/slow-release systems should be designed to release at a maximum rate of 0.05 cfs per acre of contributing impervious drainage area.
- Orifice diameters must not be less than 0.5".

Static Sizing

Dynamic Sizing

Soil at the Site

- ScA—Scantic silt loam, 0 to 3 percent slopes
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)

Location	Turf Tec (in/hr)	Double Ring (in/hr)
1	0.13	0.03
2	1.27	_
3	0.36	_
4	1.98	_

Turf Tec Median = 0.8 in/hr (\sim 0.2 in/hr calibrated to DRI)

Tree Trench Monitoring

- Inflow volume precipitation times watershed area times runoff coefficient
- Outflow estimated from system well water level

Monitoring period – 31 October 2014 – 2 November 2015

Maximum water depth to overflow = 2.4 ft

2.53 in.

Water Depth Probability

Changing Infiltration Rate

Infiltrated Volume

- For the 366 day period
 - 41.47 in. precip.
 - Precip. Volume = $87,300 \text{ ft}^3$
 - Runoff volume (C = 0.92) = $80,330 \text{ ft}^3$
 - Infiltrated volume = 64,583 ft³

(estimated from water depth)

• Total Volume reduction = 80%

Design/Regulatory Model

More Realistic Model

GI: Subsurface Gravel Filter

Excavation 90% complete

October 7, 2015

Pipe installation

October 8, 2015

Pipe installation between CB#1 & CB#2

Conclusions

- Infiltration systems yield higher infiltration rates than design rate presumably because most design methods
 - Use only bottom area
 - Use a fraction (1/2 to 1/3) of field measured rates.
- This is leading to unnecessarily oversized systems and larger capital and maintenance costs

Performance analysis of two relatively small capacity urban retrofit stormwater controls

Sizing Details

System	WQV ft ³ (m ³)	Actual WQV ft ³ (m ³)	% of normal design	Rain Event in (mm)	Sizing Method
SGWSC	7,577 (214.6)	720 (20.4)	10%	0.10 (2.5)	Static
IBSCS	1,336 (37.8)	310 (8.8)	23%	0. 23 (5.8)	Dynamic

 $WQV = \left(\frac{P}{12}\right) x IA$

Dynamic Bioretention Sizing

Static SGW System Sizing

 $Q = C dA \sqrt{2gh}$

System	TSS	TN	TP
Conv. Bioretention Average (4)	91%	36%	34%
Durham Bioretention (23% IBSC)	81%	27%	45%
Conv. Subsurface Gravel Wetland	96%	54%	58%
Subsurface Gravel Wetland (10% SGWSC)	75%	23%	53%

BMP Performance Curve: Enhanced Bioretention Land Use: Medium Density Residential

The Big Picture

- WQV design is a great concept
- For retrofits, cannot always fully size to the WQV
- Undersized system performance is still remarkable
- Adding in dynamic sizing means that we could be saving 30% to 60% of the cost estimates floating around to meet TMDL targets....literally billions of dollars

Stormwater Management Design - 70.5 acre Ultra-Urban Drainage Area			
Sizing Comparison of Capital Costs and Relative Phosphorus Load Removal Efficiency			
Best Management Practice Size	Depth of Runoff Treated from Impervious Area	*Storage Volume Cost (\$/ft³)	**Total Phosphorus Removal Efficiency (%)
	(in)		
Subsurface Gravel Filter - Minimum Size	0.35	\$1,016,912	62%
Subsurface Gravel Filter - Moderate Size	0.5	\$1,452,732	80%
Subsurface Gravel Filter - Full Size	1.0	\$2,905,463	96%
*Storage Volume Cost estimates provided by EPA-Region 1 for Opti-Tool methodology, 2015-Draft			

*Total Phosphorus %RE based on Appendix F Massachusetts MS4 Permit

http://www.unh.edu/erg/cstev

